If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-6t+4=5
We move all terms to the left:
t^2-6t+4-(5)=0
We add all the numbers together, and all the variables
t^2-6t-1=0
a = 1; b = -6; c = -1;
Δ = b2-4ac
Δ = -62-4·1·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{10}}{2*1}=\frac{6-2\sqrt{10}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{10}}{2*1}=\frac{6+2\sqrt{10}}{2} $
| 3s-16=2s-19 | | 2(3x-5)-2x=30 | | 49c=-4/5 | | -6.75x+14=-5.25x-3.5 | | 7-4r=51 | | 3+5n=1 | | -32=8x=5x+16 | | 3y=12* | | -6x=12-2x | | -9=6-8n-7 | | 12x+9x-5=7x-19 | | 11=x-3* | | y=33=147 | | 2x+60=4x+14 | | s-3=-2 | | 7x+9=24=2x | | -16=s/2-13 | | (x)=x^2−6x+21. | | 2x²+15=-49 | | 13+3x=52* | | 9x-4x+1=3x+21 | | (x)=x2−6x+21. | | (-5a^2)=0 | | 3x+9(5/4)=9 | | (5x+23)=(8x-31) | | x-16=17* | | 4=-12+x | | –15.9y=13.6−11.9y | | 42n+7=19 | | 5x-4=61* | | 3x+9(4/5)=9 | | 2d^2+5d-5=-d |